Mid-Semestral Exam Algebra-IV B. Math - Second year 2016-2017

Time: 3 hrs Max score: 100

Answer question (1) and any (4) from the rest. Throughout, F shall denote a field.

- (1) State true or false. Justify your answers. No marks will be awarded in the absence of proper justification.
 - (a) A regular 9-gon is constructible.
 - (b) There exists finite algebraically closed fields.
 - (c) The polynomial $x^4 + 3x + 3$ is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.
 - (d) If ζ_n is a primitive *n*th root of unity, then $\zeta_5 \notin \mathbb{Q}(\zeta_7)$.
 - (e) For any $n \ge 1$, there exists an irreducible polynomial of degree n in $\mathbb{F}_p[x]$. (8 × 5)
- (2) (a) Show that the splitting field of a polynomial of degree n over a field F is of degree atmost n! over F.
 (b) Show that the polynomial x^p 2 is irreducible over Q(ζ_p), where

 ζ_p is a primitive *p*th root of unity. (7+8)

- (3) Find the splitting field and the degree of the splitting field of the polynomial f(x) = x⁶ + 1
 (a) over Q, and
 (b) over F₂. (7+8)
- (4) Let p be a prime, and n be a positive integer. Then show that,
 - (a) there exists a field of order p^n ,
 - (b) any two fields of order p^n are isomorphic. (8+7)
- (5) Consider the polynomial f(x) = xⁿ 1 over a field F. Show that
 (a) if char(F) = 0 or p, with p ∤ n, then f(x) is separable over F.
 (b) if char(F) = p, and n = p^km, p ∤ m, then f(x) has precisely m distinct roots over F, each of multiplicity p^k. (5+10)